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SUMMARY 

An investigation was conducted in the Langley 16-Foot Transonic Tunnel to deter-  
mine afterbody/nozzle longitudinal aerodynamic character is t ics  of three different two- 
dimensional nozzles and a base-line axisymmetric nozzle installed on a 0.10-scale model 
of the F-18 airplane. The effects of thrust  vectoring and in-flight thrust  reversing were 
also studied. Horizontal-tail deflections of Oo, -2O, and -5' were tested. Test data were 
obtained at static conditions and at Mach numbers f rom 0.60 to 1.20 over an angle-of- 
attack range from -2' to 10'. Nozzle pressure  rat io  was varied from jet off to about 10. 

At forward speeds, the single expansion ramp nozzle (SERN) and two-dimensional 
convergent-divergent (2 -D C-D) nozzle installations generally provide higher thrust-  
minus-drag performance (untrimmed) than the base-line axisymmetric nozzle installation. 
Thrust-minus-drag performance of the wedge nozzle installation was inferior to that of the 
base-line configuration. Although the SERN suffers much larger thrust losses during 
vectored operation than the 2-D C-D nozzles, for  comparable resultant thrust-vector 
angles at  static conditions, it benefits from favorable external flow effects such that it 
generally provides the same thrust-minus-drag performance as the 2-D C-D nozzle at 
forward speeds. In addition, at dry power, the SERN generally provides the highest gain 
factors  (induced lift) and total aft-end lift during vectored operation. 
wedge nozzle (sideplates off) r eve r se r s  generally provided comparable levels of reverse  
thrust  a t  static conditions. 
35 to 60 percent more  reverse  thrust  than the 2-D C-D nozzle reverser ,  probably because 
of its larger  base a r e a  and attendant base drag. 
forward speeds caused severe losses  in horizontal-tail pitch effectiveness and control 
reversa l  at small  tail deflections at some conditions. 
nozzle reverser  panels provided up to  37.5 percent improvement in reverse  thrust  per-  
formance and also tended to increase horizontal-tail pitch effectiveness during reverse  
operation. 

The 2-D C-D and 

However, a t  forward speeds, the wedge reverser  provides 

Full deployment of the r eve r se r s  at 

Addition of sideplates to the wedge 

IN TR OD UC TION 

Since the advent of the turbojet engine, exhaust nozzles have traditionally been 
circular  in c r o s s  section to  facilitate integration with the engine. Extensive development 
of the "round" nozzle concept has resulted in structurally and thermally efficient exhaust 



systems with high internal performance. 
to  3) on current, twin-engine fighter airplanes have shown that sizable airplane perform- 
ance penalties are associated with the installation of the exhaust system into the air- 
frame.  For multiengine airplanes, most of the external installation penalty probably 
resu l t s  f rom the integration of "round" nozzles into a "rectangular" afterbody. (See 
ref. 4.) These configurations inherently have boattailed "gutter" interfairings or base 
regions on the afterbody. 

However, experimental investigations (refs. 1 

Recent studies on twin-engine fighter airplanes (refs. 5 to  13) have identified 
potential benefits for a new nozzle concept, the nonaxisymmetric or two-dimensional 
(2-D) nozzle. 
nozzle/airframe integration to achieve installed drag  reduction; thrust  vectoring for 
maneuver enhancement and short-field take-off and landing; and thrust  reversing for 
increased agility, ground handling, and reduced landing ground roll. 
nonaxisymmetric nozzle has concentrated primarily on three nozzle types: the single 
expansion ramp (refs. 8 and 13 to  20), the convergent-divergent (refs. 7, 10 to 12, 14, 19, 
and 20), and the wedge (refs. 4, 7, 10 to 12,  14, and 19 to  26). 

This new nozzle concept is geometrically amenable to improvements in 

Development of the 

As part  of a coordinated government technology program (ref. 9), three nonaxisym- 
metr ic  nozzles and a base-line axisymmetric nozzle were tested on a 0.10-scale F-18 pro- 
totype airplane model in the Langley 16- Foot Transonic Tunnel. These nonaxisymmetric 
nozzles included a single expansion ramp nozzle (SERN) , a two-dimensional convergent- 
divergent (2-D C-D) nozzle, and a wedge nozzle. The F-18 airplane is a lightweight, 
highly maneuverable, twin-engine fighter with a relatively clean afterbody for nozzle 
installation. No control surface support structure (booms, fairings, etc.) is located 
adjacent to  or ahead of the nozzles, and the vertical  tails a r e  located well forward of 
the nozzle/airframe juncture. 

This paper presents F- 18 model afterbody/nozzle longitudinal aerodynamic char- 
acter is t ics  for three different 2-D nozzle installations and a base-line axisymmetric noz- 
zle installation. Each nozzle type was investigated in both dry and afterburner power 
operating modes with varying nozzle expansion ratios. In addition to normal forward 
flight operating conditions, each 2-D nozzle was also investigated in vectored thrust  
operating modes; the 2-D C-D and wedge nozzles were also investigated in reverse  thrust  
operating modes. 
50-percent and full reverser  deployment were simulated on the wedge nozzle. The effect 
of reverser  sideplates on r eve r se r  performance was  investigated on the wedge nozzle. 
This investigation w a s  conducted in the Langley l6-Foot Transonic Tunnel a t  static con- 
ditions and at Mach numbers from 0.60 to 1.20. Angle of attack was varied from -2' to 
a maximum of loo, depending on Mach number, and nozzle pressure  ratio was varied 
from jet off to a maximum of IO, depending on nozzle power setting and Mach number. 

Full reverser  deployment was  simulated on the 2-D C-D nozzle, and 
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Horizontal-tail deflections of Oo, -2O, and -5’ were tested. 
gation are summarized in references 27 and 28. 

The resul ts  of this investi- 

SYMBOLS 

All forces  and moments, with the exception of body axis  thrust  Fj, jet normal 
force FN,j, and resultant gross  thrust  Fg, are referenced to  the stability axis 
system. 

Ae 

At 
‘D, aft 

c ( ~ - ~ )  

‘F, i 

cL 

‘L, aft 

j 

CL, 0 

%,r 

Cm 

‘m,aft 

The moment reference center was located at fuselage station 116.47. 

nozzle-exit area, cm2 

nozzle-throat area,  cm2 

aft-end drag  coefficient, - D 
%S 

thrust  - minus -aft -end drag  coefficient, - F - D  
qoos 

ideal isentropic gross  thrust coefficient, - Fi 
s 2  

Total lift total aft-end lift coefficient (including thrust  component), -- 
%os 

aft-end lift coefficient with static thrust  component removed, - Lift 
%os 

F 
jet lift coefficient, sin (a !  + 6 )  

soos 

jet-off lift coefficient 

jet - induc ed superc ir culation l i f t  coefficient 

total aft-end pitching-moment coefficient (including thrust  component), 
Total j i tching moment 

%oSE 

aft-end pitching-moment coefficient with static thrust  component removed, 
Pitching moment 

qo0SE 
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- 
C 

D 

F 

wing mean geometric chord, 35.12 cm 

aft-end drag, N 

thrust  along stability axis, N 

resultant gross  thrust, F. + FN,j2, N J J ”  

Fi 

( Y - W Y  
ideal isentropic gross  thrust, m 

- 

G 

thrust  along body axis, N 

jet normal force, N 

lift gain factor, % , r  + ‘L,j 

f ree-s t ream Mach number 

measured mass-flow rate,  kg/sec 

ideal mass-flow rate, kg/sec 

ambient pressure,  Pa 

average jet total pressure,  Pa 

free-s t ream static pressure,  Pa 

free-s t ream dynamic pressure,  Pa 

gas constant (for y = 1.3997), 287.3 J/kg-K 

vertical  distance f rom nozzle reference line to nozzle flap internal surface, 
positive up (fig. 8), c m  
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wing reference area, 3716.2 cm2 

jet total temperature, K 

axial distance along nozzle reference line from nozzle connect station, 
positive downstream, c m  

vertical  distances f rom wedge center line (fig. 16), c m  

angle of attack, deg 

thrust  deflection angle of second panel on wedge reverser  with respect to 
nozzle reference line (fig. 20), deg 

rat io  of specific heats, 1.3997 for air 

resultant thrust vector angle a t  M = 0, tan-' , deg 
(=j ) 

horizontal-tail deflection, positive leading edge up, deg 

geometric thrust  vector angle, deg 

thrust  deflection angle of first panel on wedge reverser  with respect to  
nozzle reference line (fig. 20), deg 

thrust  deflection angle of third panel on wedge reverser  with respect to 
nozzle reference line (fig. 20), deg 

Sub scr ip ts  : 

F forward thrust  mode 

R reverse  thrust  mode 

V vectored thrust  mode 
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Abbreviations: 

A/B afterburning 

ASME American Society of Mechanical Engineers 

BL butt line, c m  

C-D convergent -divergen t 

FRP fuselage reference plane 

FS fuselage station, c m  

N. A. not applicable 

SERN single expansion ramp nozzle 

2 -D two-dimensional (nonaxisymmetric) 

APPARATUS AND METHODS 

Wind Tunnel 

The experimental investigation was conducted in the Langley 16- Foot Transonic 

The wind tunnel has a variable airspeed up to a 
Tunnel. 
section and continuous air exchange. 
Mach number of 1.30. 
number of 1.10. 
be found in reference 29. 

This tunnel is a single-return, atmospheric tunnel with a slotted, octagonal tes t  

Test-section plenum suction is used for speeds above a Mach 
A complete description of this facility and operating characterist ics can 

Model and Support System 

A 0.10-scale F-18 afterbody jet-effects model was employed for this investigation 
and is shown in the sketch of figure 1 and the photograph of figure 2. The F-18 airplane 
is a lightweight, highly maneuverable fighter with a relatively clean afterbody for nozzle 
installation. 
strakes,  a straight wing, inlet diverter bleed slots through the wing, twin vertical  tails 
located well forward on the afterbody and close-spaced twin engines. 
model reproduced F-18 airplane lines except for faired-over inlets (required for 

As shown by figures 1 and 2, the configuration is characterized by nose 

The 0.10-scale 
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power-model tes t s  and located on the forebody well forward of the afterbody) and wing 
alterations required for  the model support system. The t e rm afterbody, as used in this 
paper, refers to  the metric portion of the model on which forces  and moments are mea- 
sured. The metric break, or seal station, begins at FS 144.78 and includes the aft fuse- 
lage, nozzles (including internal thrust  hardware), and empennage surfaces. The model 
forebody and wing were nonmetric. A 0.064-cm gap in the external skin at the metric- 
break station prevented fouling between the nonmetric forebody/wing and metric after- 
body. 
prevent internal flow in the model. 
component strain-gage balance which was  grounded to  the nonmetric forebody. 

A flexible rubber s t r ip  located in the metric-break gap was used as a seal to 
The metric afterbody was attached to a six- 

As shown in figures 1 and 2, the model was supported at  the wing tips in the tunnel. 
The model FRP w a s  located 7.13 c m  below the tunnel center line. 
f rom 65 percent of the semispan to the tip, w e r e  modified from airplane lines to accom- 
modate the wing-tip support system and air supply system. 
were attached to  the normal tunnel support system with V-struts as shown in figure 2. 
High-pressure air and instrumentation lines were routed through the V-struts and wing- 
tip booms entering the model fuselage through gun-drilled passages in both wings. The 
high-pressure air was dumped into a common high-pressure air plenum contained in the 
center section of the model. 

The outer wing panels, 

The two wing-tip booms 

Propulsion Simulation System 

An external high-pressure air system provided a continuous flow of clean, dry air 
a t  a controlled temperature of about 294 K at the nozzles. 
t ransferred from a common high-pressure plenum in the model center section into the 
metric portion of the model by means of two flow-transfer assemblies. 
details of one of these assemblies  is presented in figure 3. 
have been used in several  previous investigations (refs. 14, 20, 23, and 30) and are 
described in reference 30. 
t ransfer  assemblies and act  to minimize pressurization t a re s  and provide a lead-free 
as se mb ly . 

This high-pressure air is 

A sketch showing 
These flow-transfer devices 

Flexible metal bellows are located in each end of the flow- 

Transition and instrumentation sections, including 17.9-percent-open choke plates, 
were attached to each of the flow-transfer assemblies and terminated at FS 169.32 cm, 
which w a s  the common connect station for all nozzles. 

Nozzle Designs 

The base-line F-18 axisymmetric nozzle and three nonaxisymmetric or 2-D nozzles 
were tested. The 2-D nozzles represent  three generically different types: (1) single 
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expansion ramp nozzle (SERN), (2) two-dimensional convergent-divergent (2 -D C-D), and 
(3) wedge. 
external lines were established which were expected to minimize the potential for  
external flow separation in the transonic speed range. 
engine and airframe skin needed for  s t ructural  f rames,  engine installation and removal, 
engine-bay cooling air, nozzle actuation equipment, and other required accessories  
within the airplane afterbody were considered in establishing these realist ic external 
lines. 

Each 2-D nozzle type was integrated into the F-18 model so that realistic 

Internal clearance between the 

Each afterbody/nozzle combination was then tested in the Northrop diagnostic water 
tunnel in order  to determine and fix regions of separated flow. 
the base-line axisymmetric nozzles was used as a calibration standard to adjust test-  
section velocity. 
ration a t  the angle of attack known from tes t s  previously conducted in transonic wind 
tunnels. 
reference 31. 

The configuration with 

Test-section velocity was adjusted to give the same nozzle flow sepa- 

A further discussion of the rationale for operating this tunnel can be found in 

For installation of the 2-D nozzles, modifications were made to the model after-  
body start ing a t  about FS 152.40 cm. 
engine/nozzle interfairing that began a t  this fuselage station and adding filler a t  the 
fuselage corners  for smooth transition to the rectangular shaped 2-D nozzles. 
presents a sketch showing both a profile view of all nozzles tested and typical afterbody 
cross sections to illustrate afterbody modification. 
model a t  FS 169.32 cm. 

This modification consisted of filling in the 

Figure 4 

All nozzles were attached to the 

Two power settings were investigated for  each nozzle type and represented a dry or  
cruise  power setting with a model throat area of 16.13 cm2 and an afterburning (A/B) 
power setting with a throat a r ea  of 25.81 cm2. 
an exhaust-duct aspect ra t io  of 1.00 upstream of the nozzle throat. 
2-D C-D nozzles had throat aspect ra t ios  (ratio of throat width to height) of 3.71 and 2.32 
for dry and A/B power settings, respectively. The wedge nozzle had an exhaust-duct 
aspect ratio (includes wedge thickness) a t  the throat of 1.00 for both power settings. 
Based on an effective throat height (sum of upper and lower throat heights), the wedge 
nozzle had a throat aspect ra t io  of 3.26 at dry power setting and 2.03 a t  A/B power 
setting. 
was investigated for the 2-D C-D and wedge nozzles only. 
during this investigation are summarized in table I. 

The three nonaxisymmetric nozzles had 
The SERN and 

Thrust vectoring was investigated for  all 2-D nozzle types and thrust reversing 
Nozzle parameters  varied 
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TABLE 1.- NOZZLE PARAMETERS 

Nozzle 

Axisy mme tr ic 
Dry power 
A/B power 

SERN 
Dry power 
Dry power 
A/B power 
A/B power 

2-D C-D 
Dry power 
Dry power 
A/B power 

Wedge 
Dry power 
Dry power 
Dry power 
A/B power 
A/B power 

1.28 
1.56 

1.06 
1.15 
1.19 
1.36 

1.15 
1.65 
1.15 

1.10 
1.30 
1.50 
1.20 
1.40 

0 
0 

0, 20 
-7, 0, 7, 20, 
-7, 0, 7, 20 

0, 20 

-7, 0 ,  7, 20 

-7, 0, 7, 20 
0 

0 
0 
0 

.10,0, 10,20  
0 

Reverser  deployment, 
percent 

Base-line axisymmetric nozzle. - The base-line axisymmetric nozzles installed on 
the F-18 model a r e  shown in the photographs of figure 5. A sketch of the nozzle show- 
ing both the dry and A/B power configurations is given in figure 6. This axisymmetric 
exhaust nozzle represents  a hinged-flap, variable-position, convergent-divergent nozzle. 
Both the convergent and divergent portions of the nozzle are conical. On full-scale 
hardware, a single actuation system controls the nozzle-throat area; the nozzle-exit 
area A, is controlled by an adjustable linkage rod and is a unique function of throat 
area. Thus, for a se t  linkage rod length/hinge location, the nozzle area ratio Ae/At is 
a unique function of 4. 
A/B power settings, respectively, were tested. 

Nozzle area rat ios  of 1.28 and 1.56 that represented dry and 

Single expansion r amp  nozzles.- SERN nozzles installed on the F-18 model are 
shown in the photograph of figure 7. Figure 8 presents sketches of the nozzle configura- 
tion that simulated both power settings at the nozzle area rat ios  and vector angles tested. 
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The SERN nozzle is a 2 -D, variable-area, internal/external expansion exhaust 
system. Basic components consist of (1) a transition section from a round c r o s s  sec- 
tion at the tail-pipe connect flange to a 2-D cross  section at the nozzle throat; (2) a 2-D 
variable-geometry convergent-divergent upper flap assembly used to vary power setting 
(throat area); (3) a 2-D variable ventral flap used to  vary nozzle area rat io  Ae/At; and 
(4) a 2-D external expansion ramp which can b e  fixed for nonvectoring applications or  
varied for  vectoring applications. Note that the throat is forward of the ventral  flap, so 
that the power setting At is independent of the ventral  flap position or area rat io  

Ae/+. The model was tested with nozzle a r e a  rat ios  of 1.06 and 1.15 for the dry power 
throat area and with nozzle a r e a  ratios of 1.39 and 1.36 for  the A/B power throat area. 
In addition, several  vector angles 6, were investigated for each nozzle area ratio, as 
shown in table I. 
shown in figure 9. 

Photographs of a vectored SERN nozzle installed on the model are 

The SERN nozzle shape blends well with ai r f rame contours. In addition, during 
full-scale nozzle design, sidewall thickness was minimized by locating actuation hard- 
ware in the available area on top of the exhaust duct. 
that minimizes drag-producing base regions. 

The resul t  is a nozzle installation 

Two-dimensional convergent-divergent nozzle. - The 2-D C-D nozzles installed on 
the F-18 model are shown in the photographs of figures 10 and 11. 
nozzle representing configurations with both power settings and for several  vector angles 
a r e  shown in figure 12. 
model is shown in figure 13, and a sketch giving important r eve r se r  dimensions is pre-  
sented in figure 14. 

Sketches of the 

A photograph showing the 2-D C-D reve r se r  installed on the 

The 2-D C-D nozzle is a variable-area internal-expansion exhaust system which 
is a three-flap design between fixed sidewalls. 
throat area.  
controls both nozzle-exit a r e a  and thrust vector angle independently of throat area. 
model was tested with a nozzle a rea  rat io  Ae/At of 3.35 for both power-setting throat 
areas. A nozzle area rat io  of 3.65 was tested with the dry power throat area only. 

Thrust  vectoring would be  achieved on the full-scale nozzle by differential posi- 

The 2-D convergent flap controls nozzle- 
The 2 -D var  iable-position divergent flap and external boattail flap assembly 

The 

tioning of the upper and lower flap assemblies. 
each configuration is shown in table I. 
dimensional clamshell blocker and outer door combination. 
immediately downstream of the transition section that changes the exhaust duct f rom a 
round to a rectangular c r o s s  section. 

The range of vector angles tested with 
Thrust reversing is provided by a two- 

The reverser  is located 

This r eve r se r  was designed for 30-percent reverse  
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thrust  (Fg/Fi = -0.3). Thrust  reversing was tested on the model for the dry power 
nozzle only, &/At = 1.15. 

Initially, the exit of the 2-D C-D nozzle was fixed at the same fuselage station as 
However, tes ts  conducted in the Northrop water tunnel indi- the axisymmetric nozzle. 

cated a flow separation problem at about FS 169.32 due to locally higher afterbody slopes. 
This flow separation was eliminated in the'water tunnel tes t s  by extending the nozzle 
exit 3.02 c m  aft. 

Wedge nozzle.- - Figure 15 presents a photograph of the wedge nozzle installed on 
the F-18 model, and figure 16 presents  sketches of the nozzle showing representations of 
both power settings and all nozzle area rat ios  tested. The wedge nozzle investigated is 
a 2 -D, variable-area, internal/external expansion exhaust system. Results on a s imilar  
nozzle are reported in reference 23. The nozzle has a collapsing wedge centerbody and 
a fixed external nozzle flap o r  boattail. 
varied by unique scissor-type linkages and hinges which allow nozzle-exit area and area 
rat io  to be  varied independently of the throat a r e a  (ref. 24). 
is collapsed to obtain the desired throat area. Nozzle area rat ios  of 1.10, 1.30, and 1.50 
were tested with the dry power throat area,  and nozzle a r e a  rat ios  of 1.20 and 1.40 were 
tested with the A/B power throat area. 

The wedge geometry for  a flight nozzle can be 

For A/B power, the wedge 

The wedge is divided into three segments, and to obtain thrust  vectoring, the two 
aft segments are deflected to effectively camber the wedge. 
for varying full-scale nozzle throat and exit area would be employed to camber the wedge. 
Photographs of a vectored wedge nozzle a r e  shown in figure 17, and a sketch of the vec- 
tored wedge is presented in figure 18. 
-10' to 20' for the A/B power nozzle with Ae/At = 1.20, as indicated in table I. 
shown in figures 17  and 18, the aft portions of the nozzle sidewalls w e r e  attached rigidly 
to  the aft wedge segment and thus rotated as the wedge vector angle varied. The use of 
rotating sidewalls is considered an alternative to  the use  of sea ls  to prevent flow leakage 
between the aft portion of the wedge and a fixed sidewall. Provision for this type of seal 
is complicated by the fact that with fixed sidewalls, the wedge would unport during vec- 
toring. To determine the effect of sidewall rotation on vectoring performance, straight 
(nonrotating) sidewalls were also tested a t  6, = 20'. 

The same mechanisms used 

The model was tested with vector angles f rom 
As 

Thrust revers ing is obtained on the wedge nozzle by variable-geometry, three- 
segment flaps located in the upper and lower wedge surfaces.  
graphs of the wedge nozzle thrust  reverser ,  and figure 20 presents  a sketch showing 
details of the r eve r se r  design. 
in flight as well as on the ground. 
were tested on the dry power nozzle with Ae/At = 1.10. 

Figure 19 presents photo- 

For flight hardware, this  reverser  is designed to operate 
During this investigation, two deployment positions 

One reverser  position repre-  
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sented a nominal 50-percent deployment, which symmetrically directed the thrust  63O 
from the horizontal plane, as shown in figure 20. The other position represented a nom- 
inal 100-percent deployment, which directed the flow forward at an  angle of 135' f rom 
the horizontal. The reverser  with 100-percent deployment was  designed for 50-percent 
reversed thrust  F F. = -0.5 . The 50-percent r eve r se r  simulated a thrust-spoiler 
position. To determine the effect of r eve r se r  flap sideplates (see fig. 20) on reverse  
thrust  performance, the r eve r se r  was also tested in each deployment position with the 
sideplate s off. 

( g / 1  1 

Instrumentation 

External afterbody aerodynamic and internal nozzle thrust  forces  and moments 
were measured with an internal six-component strain-gage balance. Ten pressure  or i -  
fices in the metric-break gap at FS 144.78 cm were used to measure pressures  for  t a r e  
corrections. Internal cavity pressure,  a lso used for pressure-area force tares, was 
measured a t  IO locations in the  afterbody cavity. 
gravity, was measured by a calibrated attitude indicator mounted in the nose. 

Model angle of attack, relative to 

Mass-flow ra te  in each nozzle was determined from total p ressure  and temperature 
measurements in the flow transfer assemblies (fig. 3) and by constants determined from 
calibrations with ASME standard nozzles. Total mass-flow rate (both nozzles) was also 
measured by a turbine flowmeter (external to tunnel) and used as a backup to the flow- 
transfer assembly measurements. 
f rom two total p ressure  rakes  and one total temperature probe located in the instrumen- 
tation section aft of the transition section and choke plate (fig. 3). 
the top and one from the side of both instrumentation sections, contained three total p res -  
su re  probes. 

Flow conditions in each nozzle were determined 

Each rake, one from 

All pressures  were measured with individual pressure  transducers. 

Tests  

Tests  were conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers 
f rom 0.60 to 1.20. 
number; nozzle pressure  rat io  was varied from jet off to 10.0, depending upon Mach 
number and nozzle power setting. Basic data were obtained by holding the nozzle pres -  
su re  ra t io  constant and varying the angle of attack; nozzle pressure  rat io  sweeps were 
conducted at selected, constant angles of attack. All configurations were tested with the 
horizontal-tail incidence a t  Oo, and selected configurations were also tested at  -2' and -5'. 
Reynolds number based on the wing mean geometric chord varied from about 3.4 x lo6 to 
4.8 x lo6. 

Angle of attack was varied from -2' to loo, depending upon Mach 
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; 

All tests were  conducted with 0.25-cm-wide boundary-layer transition s t r ips  con- 
sisting of No. 100 silicon carbide gr i t  sparsely distributed in a thin film of lacquer. 
These s t r ips  were located 3.81 cm from the t ip of the nose and 2.54 cm aft (streamwise) 
of all lifting surface and inlet (imaginary) leading edges. 

Data Reduction 

All data for  both the model and the wind-tunnel facility were recorded simulta- 
neously on magnetic tape. Approximately 50 f rames  of data, taken at a rate of 10 f rames  
per  second, were used for each data point; average values were used in computations. 
The recorded data were used to compute standard force and moment coefficients using 
wing area and mean geometric 'chord for  reference a r e a  and length, respectively. 

Because the center line of the balance was located below the flow transfer 
assembly (bellows) center line, a force and moment interaction (tare) between the bellows 
and balance existed. In addition, although the bellows were designed to minimize momen- 
tum and pressurization tares ,  small  bellows t a re s  st i l l  existed with the jet on. 
tares resul t  from small  p ressure  differences between the ends of the bellows when inter- 
nal velocities are high and also from small  differences in the forward and aft bellows 
spring constants when the bellows are pressurized. The bellows/balance interaction 
tares were determined by single and combined calibration loadings on the balance, with 
and without the jet operating with the ASME calibration nozzles installed. These t a r e  
forces  and moments were then removed from the appropriate balance component data. 
A more detailed description of this procedure can be found in references 14 and 30. 
addition, balance corrections were also made to account for metric-break gap and 
internal cavity pressure/area tares. 

These 

In 

The angle of attack of the nonmetric wing and forebody w a s  determined from a cal- 
ibrated attitude indicator located in the model nose. 
angle between the afterbody center line and the relative wind, w a s  determined by applying 
deflection t e rms  caused by model and balance bending under aerodynamic load and a flow 
angularity t e rm to the angle measured by the attitude indicator. A flow angularity adjust- 
ment of 0.1' w a s  applied, which is the average angle measured in the 16-Foot Transonic 
Tunnel. 

Angle of attack CY, which is the 

Since the choke plate and nozzle flow instrumentation were downstream of the 
round-to-rectangular duct transition section (see fig. 3), nozzle performance parameters  
were independent of duct transition effects. 
for the ASME calibration nozzles and for the 2-D C-D nozzle a t  A/B power with the diver- 
gent flaps removed. 

Total p ressure  profiles were determined 

Thus, total p ressure  profiles were measured a t  the throat of a con- 
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vergent 2-D nozzle. 
integrated value of jet total p ressure  at the nozzle throat. 

Each internal total p ressure  probe was then corrected to  the 

Thrust-removed coefficients are obtained by determining the components of thrust  
in the axial and normal direction and subtracting these values f rom the measured after-  
body forces. 
static data and a r e  a function of the free-s t ream static and dynamic pressure.  As such, 
thrust-removed coefficients at nozzle pressure  rat ios  greater  than that measured at 
static conditions are calculated by extrapolating the static data. 
in par t  of the data presentation as dashed lines. 

These thrust  components at forward speeds are determined from measured 

These resul ts  a r e  shown 

The lift gain factor G resulting from thrust  vectoring was computed for each 
nozzle type at 6, = 20’. Jet-induced lift coefficient plus jet lift coefficient was obtained 
from the following relation: 

C L , r  + ‘L, j = ‘L - ‘ ~ , o  

Je t  lift coefficient was calculated by using the resultant thrust  vector angle measured at 
static conditions and the following relation: 

Model balance arrangement made i t  necessary to use static resultant thrust  vector angle 
in this relation, since resultant thrust  vector angle could not be determined for conditions 
a t  forward speeds. Lift gain factor is then defined as 

‘L,r + ‘L,j G =  r* 

PRESENTATION OF RESULTS 

t 

, .. 

The resul ts  of this investigation are presented in plotted coefficient and rat io  form 
in the following figures: 
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RESULTS AND DISCUSSION 

Basic Data 

Static (M = 0) performance.- Static performance of all nozzle types tested in for-  
ward thrust  mode, vectored thrust  mode, and reverse  thrust  mode is shown in figures 2 1  
to 30. Forward thrust  performance F F. of all nozzle types was s imilar  in magnitude 
and trends to that reported in previous investigations. 
types with all internal exhaust flow expansion, namely the axisymmetric and 2-D C-D noz- 
zles,  a r e  characterized by a single performance peak which occurs  near the nozzle pres -  
su re  ratio required for fully expanded exhaust flow. 
performance shifted to higher nozzle pressure  rat ios  as nozzle area rat io  Ae/At 
increased. 
expansion, namely the SERN and wedge nozzles, a r e  characterized by two performance 
peaks. 
nozzle area ratio a t  the exit (values given in this paper) and also of the a r e a  rat io  a t  the 
end of the external flap or  wedge expansion surface. (See ref. 19.) It should be noted 
that internal performance of nozzles with external expansion surfaces  will be sensitive 
to external flow effects during forward flight. 

( g/ 1) 
(See refs.  14 and 19.) Nozzle 

As  expected, peak internal 

(See fig. 25.) Nozzle types with both internal and external exhaust flow 

The nozzle pressure  rat io  a t  which each of these peaks occurs  is a function of the 

The SERN nozzles (see fig. 22) produce measured resultant thrust  vector angles 6 

which are a strong function of nozzle pressure  rat io  at all geometric vector angles 6, 
tested, including the cruise  6, = 0 condition. For  example, measured resultant thrust  
vector angle varied from about -4' to 4' at dry power and from about -2' to 6' a t  
A/B power for the 6, = 0' case. 
patterns impinging upon the expansion ramp, a r e  typical for SERN nozzles, as reported 

These results,  which a r e  caused by changing wave 
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in references 14 and 19. Measured resultant thrust  vector angles for  the 2-D C-D and 
wedge nozzle types were not as dependent on nozzle p re s su re  ra t io  as the SERN nozzle. 
(Compare figs. 24 and 26 with fig. 22.) However, both the 2-D C-D and wedge nozzles 
produced small  positive resultant thrust  vector angles (1' to 4') for  the 6, = Oo case. 
These small  angles may be  caused by model misalignment during construction and/or 
assembly. Another possible explanation for  this phenomenon could be  an asymmetric 
pressure  profile in the nozzle exhaust flow pitch plane. 
all three 2-D nozzles produced incremental resultant thrust  vector angles (6), - ( b ) F  
which were approximately equal to the geometric vector angle 6,. Flow turning effec- 
tiveness generally decreased with increasing nozzle pressure  ratio, particularly for the 
SERN. 

At static conditions (M = 0), 

Nozzle efficiency resultant gross  thrust  ra t io  F F. generally decreased with 
(See figs. 22, 24, and 26.) 

( g/ 1) 
increasing positive values of geometric thrust  vector angle. 
Since thrust  losses  resulting from turning the jet flow away from the body axis have been 
accounted for by computing a resultant thrust  t e rm (see Fg in "Symbols" , any reduc- 
tions in nozzle efficiency shown for vectored thrust  operation resul t  f rom flow-turning 
losses  in the nozzles. Negative geometric vector angles generally increased resultant 
gross  thrust  ratio for all three 2-D nozzle types. 
phenomenon is that negative geometric vector angles helped to offset losses  associated 
with the small, positive resultant thrust  vector angles which were measured a t  6, = 0' 
and discussed previously. 
present a t  6, = Oo, could perhaps be improved by negative vector angles. 

) 

A possible explanation for  this 

In addition, asymmetric pressure  profiles, which may be 

Two nozzle a r e a  rat ios  were tested on the SERN nozzle a t  6, = 0' and 20'. 
shown by figure 23, nozzle a rea  ratio had little effect on nozzle vectoring performance. 

As 

Static reverse  thrust  performance is pres2nted in figures 29 and 30 for the 2-D 
C-D and wedge nozzles, respectively. 
30-percent reverse  dry power thrust when fully deployed a t  static conditions. Results 
f rom this investigation indicate that this goal was exceeded for pt, j/pa < 3.6. (See 
fig. 29.) However, the operating nozzle pressure  rat io  a t  static conditions for most cur-  
rent  engines is generally less than 3.6. 
on the wedge nozzle, namely, 50 and 100 percent. The 50-percent deployment represents  
a thrust-spoiler position and the 700-percent deployment was designed to produce reverse  
thrust. 
which were designed to prevent spillage of the exhaust flow around the sides of the 
r eve r se r  panels. On the wedge nozzle, r eve r se r  efficiency increased with increasing 
nozzle pressure  ratio. (See fig. 30.) With sideplates off, the reverser  with 50-percent 
deployment achieved dry power static thrust  levels of 0.34 to 0.44, while the 100-percent 
r eve r se r  deployment produced thrust  levels of -0.30 to -0.42. Addition of the sideplates 

The 2-D C-D nozzle was designed to produce 

Two reve r se r  deployment positions were tested 

Both deployment positions were tested with and without sideplates (see fig. 20), 



improved reverser  performance by about 16.5 percent when partially deployed and by 
about 37.5 percent when fully deployed. 

Performance at forward speeds. - Basic data for most configurations investigated 
are presented as aerodynamic coefficients in figures 32 to 83. 
including thrust  contributions, are shown at the top of each figure; thrust-removed coef- 
ficients are shown at the bottom of each figure. 
performance parameter (F - D)/Fi with nozzle pressure  rat io  pt ./pm is presented 
in figures 84 to 87 for  each nozzle type and expansion ratio Ae/At investigated in the 
forward thrust mode. 
figuration variables on aerodynamic coefficients (total and thrust removed) are presented 
in figures 88 to 113. 

Total coefficients, 

The variation of the aeropropulsion 

9 1  

The effects of a r e a  ratio, vectoring, reversing, and several  con- 

As expected, because of increased drag, the aeropropulsion performance of all con- 
figurations tested decreased with increasing Mach number and/or model angle of attack. 
(See figs. 84 to 87.)  
data obtained with SERN and wedge nozzle installations. Both these nozzles have external 
expansion surfaces which would be affected by external flow effects and thus have internal 
performance which depends on Mach number, angle of attack, nozzle pressure ratio, and 
configuration external geometry. 
external expansion surfaces, has internal performance independent of external flow 
effects as long as the nozzle exhaust flow does not separate f rom the nozzle divergent 
flaps. 
ra t io  shown in figure 85 follows trends indicated a t  static conditions. 
That is, low nozzle area rat ios  generally produce higher performance at  low nozzle pres -  
su re  ratios,  and high nozzle area rat ios  generally produce higher performance a t  high 
nozzle pressure  ratios. Since actual nozzle flight hardware would be continuously var i -  
able within mechanical constraints, nozzle area ratio would be programmed, as closely 
as possible, for optimum performance over the operating range of nozzle pressure  ratio. 

Vectored thrust  operation a t  positive geometric thrust  vector angles typically 

Consistent trends with nozzle a rea  rat io  are not evident from the 

On the other hand, the 2-D C-D nozzle, which has no 

Thus, the variation of wind-on 2-D C-D nozzle performance with nozzle area 
(See fig. 25.) 

increased lift and decr,eased thrust  minus drag, particularly a t  high geometric thrust  
vector angles. 
ative geometric thrust  vector angles produced negative lift-coefficient increments. 
magnitude of the lift-coefficient increments produced by thrust vectoring generally 
decreased with increasing Mach number. 
of total aft-end coefficients (includes thrust component), shown in figures 88 to 92, with 
the thrust  removed aft-end lift coefficients, shown in figures 93 to 97, indicates that most 
of the lift increment obtained during vectored thrust  operation resul ts  f rom the component 
of thrust  in the l i f t  direction. 
large geometric thrust  vector angles. 

(See fig. 88, fo r  example.) As expected, vectored thrust  operation at  neg- 
The 

(Compare figs. 88(a) to 88(c).) Comparison 

Significant increases  in aft-end drag are associated with 
(See figs. 93(b) and 94(b).) 
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r 

Nozzle expansion rat io  affected vectored thrust  performance only slightly, as indi- 
cated in figures 98 to 101. 
increased thrust  minus drag at both vectored and unvectored thrust  conditions. 
fig. 102.) 

As expected, removing the horizontal tails reduced lift and 
(See 

The wedge nozzle was investigated both with a fixed straight sidewall and a simu- 
lated variable sidewall which moved with the wedge during vectored operation. 
figs. 17 and 18.) As shown in figure 103, wedge sidewall angle had little effect on vec- 
tored thrust  performance. 

(See 

The effect of Mach number on thrust  r eve r se r  performance is presented in fig- 
u r e s  106 and 107. At forward speeds, thrust  r eve r se r  effectiveness significantly exceeds 
that obtained a t  static (M = 0) design conditions and increases  with increasing Mach num- 
ber.  
probably resu l t s  f rom a significant base drag on the rear face of deployed reverser  
panels. 
sideplates (see fig. 19) to the r eve r se r  panel, as shown in figure 107. 
probably prevent exhaust flow spillage out the s ides  of the reverser  and thus direct  more 
of the exhaust flow in the forward (reverse) direction. 

As indicated in reference 23, improved r eve r se r  effectiveness a t  forward speeds 

For the wedge nozzle, reverser  effectiveness is significantly improved by adding 
These sideplates 

Configuration Comparisons 

Forward thrust  mode.- Static internal performance of the 2-D C-D nozzle through- 
> 6.0 is competitive with 

(See fig. 114.) Per- 
t, j/Pa out the nozzle pressure  rat io  range and of the SERN at p 

the axisymmetric convergent-divergent nozzle a t  d ry  power setting. 
formance of the wedge nozzle and of the SERN at p 
cent below the axisymmetric nozzle a t  dry power setting. 
nozzles, however, have external expansion surfaces; thus internal performance will be 
altered by external flow effects a t  forward speeds. At A/B power, all three nonaxisym- 
metric nozzles have higher performance than the axisymmetric nozzle, with the 2-D C-D 
nozzle exhibiting the highest performance. However, it should be  noted that the axisym- 
metric nozzle expansion rat io  tested a t  A/B power is much higher than the nozzle expan- 
sion rat ios  tested for the nonaxisymmetric nozzles. 
the axisymmetric nozzle should produce internal performance levels similar to that 
obtained for the 2-D C-D nozzle. 

< 6.0 generally is 2 to 4 per-  t, j/Pa 
Both the SERN and wedge 

A lower nozzle expansion rat io  for  

At forward speeds and dry power setting (fig. 115(a)), the 2-D C-D and SERN noz- 
z les  have higher or equal thrust-minus-drag performance than the axisymmetric base-  
line configuration, and the wedge nozzle generally has lower performance than the base 
line. All three nonaxisymmetric nozzles had lower aft-end drag than the axisymmetric 
nozzle base-line configuration a t  the dry power setting. 
the nonaxisymmetric nozzles, particularly the SERN, generally produced higher aft-end 

At A/B power setting (fig. 115(b)), 

22 



.drag than the axisymmetric nozzle base-line configuration. Even so, the nonaxisym- 
metric nozzles produced higher thrust-minus-drag performance (one exception is noted 
at M = 0.60 for the 2-D C-D nozzle) than the axisymmetric base-line configuration. 
The overexpansion losses  resulting from the too high nozzle expansion rat io  (1.56) tested 
for the axisymmetric nozzle at A/B power partially explain this performance. 
an examination of the static and forward-speed data clearly indicates that the SERN also 
benefits f rom favorable external flow effects on internal performance. 

In addition, 

In summary, for the test conditions of this investigation, the SERN and 2-D C-D noz- 
z les  generally produce higher and the wedge nozzle generally produces lower thrust-  
minus-drag performance than the axisymmetric nozzle base-line configuration. 

Nozzle type generally affected aft-end l i f t  and pitching-moment characterist ics 
only slightly. 
largest  effect, particularly a t  A/B power. 
a lso have the largest  impact on trimmed aerodynamic data and thus greater ca re  must 
be exercised when integrating nozzles of this type into the airframe. 

The SERN, because of its asymmetric geometry in the pitch plane, had the 
This fact indicates that the SERN nozzle wi l l  

Vectored thrust  mode. - A comparison of thrust  vectoring capabilities for the non- 
All  three axisymmetric nozzles at static (M = 0) conditions is presented in figure 116. 

nozzle types have good flow-turning capabilities, as evidenced by measured resultant 

the 2-D C-D nozzle produced resultant thrust  vector angles greater than 20° while losing 
less than 2 percent of its internal performance. 
8 percent of its internal performance in achieving s imilar  resultant thrust  vector angles. 
The loss  associated with turning the thrust away from the axial direction is given as a 
dashed line in figure 116. A s  can be seen from this figure, the entire 2-D C-D nozzle 
thrust  loss  due to thrust  vectoring resul ts  f rom turning the thrust away from the axial 
direction. 
z les  (ref. 32) no additional turning losses  are incurred. However, the SERN nozzle, 
which utilizes external, supersonic-flow deflection turning for positive vector angles 
(ref. 14), suffers f rom additional flow-turning losses  due to shock-induced momentum 
losses  above those expected from geometric considerations. 

thrust  vector angles nearly equal to geometric thrust  vector angles. At pt, j/pm > 2.0, 

The SERN nozzle generally lost 4 to 

Because of the efficient internal flow-turning character is t ics  of 2-D C-D noz- 

Although the SERN nozzle suffers large thrust  losses  due to thrust  vectoring a t  
static conditions, i t  benefits f rom favorable external flow effects a t  forward speeds. 
During dry power vectored thrust  operation a t  forward speeds, the SERN nozzle produces 
the most l i f t  (fig. 117(a)), thrust  minus drag comparable to  that achieved with the 2-D 
C-D nozzle (fig. 117(b)), and the largest  gain (induced lift) factors (fig. 118) of all config- 
urations tested. 

Reverse thrust  mode.- During reverse  thrust  operation, the 2-D C-D and wedge 
nozzles (without r eve r se r  sideplates) produce comparable levels of reverse  thrust  at 
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static conditions (fig. 119). 
ra t io  were determined for each nozzle. 
decreases  and reverser  efficiency of the wedge nozzle increases  with increasing nozzle 
pressure  ratio. 
efficiency by about 37.5 percent more negative values of F,/Fi). 

b e r  (fig. 120) because of base drag on the r eve r se r  panels. Reverser  performance 
obtained during the current  investigation is compared in figure 120 with that reported 
for  other nonaxisymmetric nozzles in references 14 and 23 and for an axisymmetric 
nozzle described in reference 33. Comparison of the 2-D C-D and wedge nozzle 
r e v e r s e r s  ( reverser  sideplates off) can be made only at 100-percent deployment. 
Although a t  M = 0 both r eve r se r s  have almost identical performance (fig. 120(a)), at 
forward speeds (fig. 120(b) and (c)), the wedge r eve r se r  provides f rom 0.25 to 0.45 more 
reverse  thrust  than the 2-D C-D reverser .  That is, the change in (F - D)R/(F - D)F 
was 0.25 to 0.45, with the wedge reverser  having more negative values. 
performance resu l t s  f rom a larger  base area on the wedge r eve r se r  than the one on the 
2-D C-D reve r se r  at 100-percent deployment. 
a lso ac ts  as a conventional speed brake. The performance of the axisymmetric nozzle 
reverser  is s imilar  to that of the wedge nozzle at 100-percent deployment but provides 
0.30 to 0.40 more reverse  thrust  (35 to 60 percent) than the 2-D C-D nozzle a t  forward 
speeds. 

However, opposite t rends with increasing nozzle pressure  
Reverser  efficiency of the 2-D C-D nozzle 

Addition of r eve r se r  sideplates on the wedge nozzle increases  r eve r se r  

i 
As discussed previously, r eve r se r  efficiency increases  with increasing Mach num- 

This higher 

(Compare figs. 14 and 20.) This area 

At 50-percent deployment, the wedge nozzle r eve r se r  (thrust spoiler) is signifi- 
cantly more effective than the axisymmetric nozzle reverser .  
the wedge nozzle r eve r se r  panels improves wedge nozzle r eve r se r  performance a t  all 
tes t  conditions. 

Addition of sideplates to 

Operation of an in-flight thrust reverser  can cause severe stability and control 
problems a t  forward speeds. 
erence 34 indicate severe nose-down pitching moment at  large deployments and 30- to 
40-percent reduction in horizontal-tail effectiveness. 
reverser  (ref. 23) a lso showed not only losses  in tail  lift, but a lso significant losses  in 
rudder effectiveness for a configuration with both single and twin vertical  tails. 
effect of 2-D C-D and wedge nozzle r eve r se r s  on horizontal-tail pitch effectiveness is 
presented in figure 121. 
for 100-percent deployment of both nonaxisymmetric nozzle reversers .  
tions, control reversa l  is indicated for small  tail deflections. 
the wedge reverser  appeared to improve horizontal-tail pitch effectiveness at M = 0.60. 
A possible explanation for  this is that the sideplates prevent lateral  spillage of the exhaust 
flow and thus tend to isolate the horizontal ta i ls  f rom the reverser  flow. 

Data on an axisymmetric nozzle r eve r se r  reported in ref- 

Results for  a wedge nozzle 

The 

Severe losses  in horizontal-tail pitch effectiveness are shown 

Addition of sideplates to  
At some condi- 

Although severe 
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problems are noted for  in-flight reverser  operation, they can probably be eliminated or 
minimized to an acceptable level by proper design and by integration of the r eve r se r  into 
the airframe. However, since these problems are probably highly configuration depend- 
ent, no attempt at fixes were studied during the current  investigation. 

CONCLUSIONS 

An investigation was conducted in the Langley 16-Foot Transonic Tunnel to deter-  
mine afterbody/nozzle longitudinal aerodynamic characterist ics of three different two- 
dimensional nozzles and a base-line axisymmetric nozzle installed on a 0.10-scale model 
of the prototype F-18 airplane. 
reversing were also studied. Horizontal-tail deflections of Oo, -2O, and -5' were tested. 
Test  data were obtained at static conditions and at Mach numbers from 0.60 to 1.20 and 
over an angle-of-attack range from -2' to 10'. Nozzle pressure  ratio was varied from 
jet off to about 10. 

The effects of thrust  vectoring and in-flight thrust 

Results f rom this study indicate the following conclusions: 

1. At forward speeds, the single expansion ramp nozzle (SERN) and two- 
dimensional convergent-divergent (2-D C-D) nozzle installations generally provide higher 
thrust-minus-drag performance (untrimmed) than the base-line axisymmetric nozzle 
installation. 
inferior to that of the base-line configuration. 

The thrust-minus-drag performance of the wedge nozzle installation was 

2. Although for comparable resultant thrust  vector angles a t  static conditions the 
SERN suffers much larger  thrust  losses  during vectored operation than the 2-D C-D noz- 
zle, it benefits f rom favorable external flow effects so that it generally provides the same 
thrust-minus-drag performance as the 2-D C-D nozzle at forward speeds. In addition, a t  
dry power, the SERN generally provides the highest gain fac tors  (induced lift) and total 
aft-end lift during vectored operation. 

3. The 2-D C-D and wedge nozzle (sideplates off) r eve r se r s  generally provided 
comparable levels of reverse  thrust a t  static conditions. 
the wedge r eve r se r  provides 35 to 60 percent more r eve r se  thrust  than the 2-D C-D noz- 
zle reverser ,  probably because of its larger  base area and attendant base drag. 

However, at forward speeds, 

4. Full deployment of the r eve r se r s  at  forward speeds caused severe losses  in 
horizontal-tail pitch effectiveness and control reversa l  at small  tail deflections at some 
c ondit ion s. 
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5. Addition of sideplates to the wedge nozzle r eve r se r  panels provided up to  
37.5-percent improvement in reverse  thrust  performance and also tended to increase 
horizontal-tail pitch effectiveness during reverse  operation. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
February 29, 1980 
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Figure 1.- Sketch of model. All dimensions are in centimeters. 



Figure 2.- Installation of F-38 model in Langley l6-Fool Transonic Tunnel. 

w 
c1 



Nonmetric- I Met r i c  \ I 
FS 144.78 
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In te rna l  flow system, nonaxisymmetric nozzles 

Figure 3.- Details of internal flow systems showing flow transfer assemblies. All dimensions in centimeters 
unless otherwise noted. 
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Figure 4. - Sketch showing composite view of nozzles tested and some afterbody cross sections. 
All dimensions in centimeters unless otherwise noted. 

W 
w 



L-78- 1646 
Figure 5. - Base-line axisgmmetric nozzle, dry power, installed on F-18 model. 
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Figure 6. - Sketch of axisymmetric nozzle. A l l  dimensions 
in centimeters unless otherwise noted. 
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Figure 7.- Overall view of SERN nozzle installed on F-18 model. 
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Figure 8.- Sketches of SERN nozzle. Nozzle has diverging sidewalls from FS 169.32 to FS 171.86; nozzle width 
from FS 171.86 to exit is 7.73 cm. All dimensions in centimeters unless otherwise specified. 
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Figure 10. - Overall view of 2-D C-D nozzle installed on 3’-18 model. 
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Figure 12.- Sketch of 2-D C-D nozzle. Nozzle has diverging sidewalls from FS 171.09 to FS 173.09; nozzle width 
from FS 173.09 to exit is 7.74 cm. All dimensions in centimeters unless otherwise specified. 
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Figure 15.- Overall view of wedge nozzle installed on F-18 model. 
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Figure 16.- Sketch of wedge nozzle. Nozzle has diverging sidewalls from FS 169.32 to FS 171.86; nozzle 
from FS 171.86 to exit is 7.21 cm. All  dimensions in centimeters unless otherwise specified. 
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Figur 
L-78 -2856 

'e 17.- Vectored sidewalls of wedge nozzle with 6, = 200. 
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Figure 18.- Sketch showing positive vectoring modes of wedge nozzle. Vectored sidewall shown only for 
6, = 20'. All dimensions in centimeters unless otherwise noted. 
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Figure 19.- Details of wedge nozzle thrust reverser. 
L -80 -112 

48 



A Reverser deployed 100 % 

I S  ideplate 

FS 169.32 

t 
FS 179.17 

Figure 20.- Sketch showing thrust reversing modes of wedge nozzle. All dimensions in centimeters unless 
otherwise specified. 
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Figure 21. - Unvectored static performance for axisymmetric nozzle. 
Different symbols represent repeat runs. 
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Figure 22. - Static vectoring performance for SERN nozzle. 
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Figure 23.- Effect of area rat io  on static vectoring performance of SERN nozzle. 
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Figure 27.- Effect of area ratio on static unvectored performance for wedge nozzle. 
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Figure 31.- Variation of ideal thrust coefficient with nozzle pressure ratio for various nozzles tested. M = 0. 
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Figure 32. - Variation of aerodynamic ideal thrust coefficient with nozzle pressure for various nozzles tested. 
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.20 

.16 

. 12 

‘L 

.08 

.04 

0 
.16 . 12 .08 .04 0 -.04 0 -. 1 -. 2 -. 3 -. 4 -4 0 4 8 12 .20 

a, deg %-DI ‘m 

5, aft 

.16 

. 12 

.08 

.04 

0 
-4 0 4 a 12 0 .oo4 .ma .o iz  .o i6  .020 .024 0 -. 1 -.2 1 3  -. 4 

c o ,  an ‘m, aft a, deg 

(b) M = 0.90. 

W 
4 

Figure 44. - Continued. 



.16 

. 12 

.08 

.04 

0 

-.04 

‘L, an 

0 -. 1 -.2 -, 3 -4 0 4 8 12 .20 .16 .I2 . O X  .04 0 -.04 . 3  .2 . 1  

‘(F-OI 

. 12 

.08 

.04 

0 

-_  04 
-4 0 4 8 12 0 ,004 .W8 .012 .016 ,020 ,024 .028 0 -.l -.2 -.3 -.4 -.5 

‘D, aft ‘m, aft 

(c) M = 1.20. 

Figure 44. - Concluded. 



W 
W 

__-_ 

-4 0 4 8 12 . 5  . 4  .3 . 2  .1 0 -. 1 . 3  . 2  .1 0 -.l -.2 -.3 

. 12 

.08 

‘L aft .04 

0 

-. 04 
-4 0 4 8 12 0 .004 .008 ,012 ,016 ,020 ,024 . 1 0 -. 1 -.2 -. 3 -. 4 -.5 

a. de9 ‘D, aft 

(a) M = 0.60. 
‘m. aft 

Figure 45. - Longitudinal afterbody aerodynamic characteristics, SERN nozzle, dry power. 
6v  = 20’; A At = 1.15. e/ 

6 h  = -2O; 



c.’ 
0 
0 

cL 

‘L, aft 

.12 

.08 

.04 

0 

-.04 
. 3  .2 . I  0 -.1 - . 2  8 12 .20 .16 .12 .08 .04 0 -.04 -4 0 4 

a, deg ‘(F-01 ‘m 

. I 2  

.oe 

.04 

0 

- nd 
-4 0 4 8 12 0 .004 .008 .012 .016 .020 .024 . I  0 7 1  -. 2 -. 3 -. 4 

‘0, aft cm. aft  
0, deg 

(b) M = 0.90. 

Figure 45. - Continued. 



‘L 

0 -.04 . 3  . 2  .1 0 -. 1 -. 2 -4 0 4 8 12 .20 .16 .12 .08 .04 

‘IF-DI 

-4 0 4 a 12 0 .004 ,008 .012 .016 .020 ,024 .028 0 -.I -.2 - .3 -.4 

‘D, a f t  

(c) M = 1.20. 

Figure 45. - Concluded. 

‘m, aft 



0 co 
.16 

.12 

.08 

cL .M 

0 

-.04 

‘L, aft 

.08 

.04 

0 

-. 04 

-. 08 
-4 0 4 8 12 0 ,004 .W8 .012 .016 .020 .024 . 1  0 -.1 - . 2  -.3 -.4 - .5 

a, deg ‘m, aft ‘D, aft 

(a) M = 0.60. 

Figure 46. Longitudinal afterbody aerodynamic characteristics, SERN nozzle, dry power. 
6h  = -5’; 6, = 20’; Ae/% = 1.15. 



-4 0 4 8 12 .20 .16 .12 .08 .04 0 :04 .12 .08 .04 0 -.04 -.08 :12 

‘IF-Dl ‘m 
0, deg 

‘t, aft 

.08 

.04 

0 

-.04 

-.08 
0 -.04 -.08 -.12 -.16 -.20 -4 0 4 8 12 0 .004 ,008 ,012 ,016 .020 .08 .04 

0, deg ‘D, aft ‘m, aft 

(b) M = 0.90. 

Figure 46. - Concluded. 

CI 
0 
w 



%-DI 

12 

.08 

‘L, a f t  

.04 

0 
-4 0 4 8 12 0 ,004 ,008 ,012 ,016 ,020 .024 ,028 0 -. 1 -. 2 -, 3 -. 4 -. 5 

‘D. a f t  

(a) M = 0.60. 
‘m. a f t  

Figure 47. - Longitudinal afterbody aerodynamic characteristics, SERN nozzle, A/B power. 
6 h  = 0’; 6 = 0’; A,/% = 1.19. V 



-4 0 4 8 12 .20 .16 .12 .08 .04 0 -.04 0 -.04 -.08 -.12 -.16 -.20 

‘[F-DI ‘m 
0, deg 

-4 0 4 8 12 0 .004 ,008 ,012 .016 .020 .04 0 -.04 :08 -. 12 -. 16 -.20 

‘D, aft 

(b) M = 0.90. 
‘m, an 

Figure 47. - Continued. 



‘L 

.12 

.OB 

.04 

0 

-_  04 
-4 0 4 8 12 .20 ,16 .12 .08 .04 0 -.04 0 -.04 -.08 -.12 -. 16 -.20 

.12 

.OB 

‘L, a f l  .04 

0 

-. 04 

‘0, aft 

(c) M = 1.20. 

Figure 47. - Concluded. 



-4 0 4 8 12 .5 . 4  . 3  .2 0 -.l . 3  .2 0 -.l - . 2  - .3  

.04 

0 

- OA . _  
0 -. 1 - . 2  -.3 -. 4 -.5 -4 0 4 8 12 0 . W4 . W8 .012 ,016 ,020 ,024 ,028 

‘D, aft ‘m, aft 
a, deg 

(a) M = 0.60. 

Figure 48. - Longitudinal afterbody aerodynamic characteristics, SERN nozzle, A/B power. 
6 h  = -2’; 6 V = 0’; A,/! = 1.19. 



Y 

0 
03 

-4 0 4 8 12 .20 .16 .12 .08 .04 0 :04 12 .08 .04 0 -.04 -.08 :I2 -. 16 

aft 

(b) M = 0.90. 

Figure 48. - Continued. 



7.2 

.04 __ 

0 -.04 -.08 -.12 -.16 -4 0 4 8 12 .20 ,16 12 .08 .04 0 -,04 .12 .08 .04 

.08 

--3 

.04 

5. an 

-.04 

-.08 
0 -.04 -.08 :I2 :16 -.20 -.24 -4 0 4 8 12 0 ,004 .W8 ,012 ,016 ,020 ,024 04 

‘D. an ‘m. an 

( c )  M = 1.20. 

Figure 48. - Concluded. 

CI 
0 
W 



CL 
CL 
0 

CL 

cL, 

.20 

. 16 

. 12 

.OB 

aft 

.vu 

0 -.l -.2 . 2  . I  -4 0 4 E 12 .5 . 4  . 3  . 2  .1  0 -. 1 . 3  

.08 

.04 

0 

-.04 

-.08 
-4 0 4 8 12 0 .W4 ,008 ,012 ,016 ,020 ,024 . 1 0 -. 1 -.2 -.3 -.4 

0. deg 'D. a f t  
'm, an 

(a) M = 0.60. 

Figure 49. - Longitudinal afterbody aerodynamic characteristics, SERN nozzle, A/B power. 
6 h  = -5'; 6 = 0'; A At = 1.19. 

V e/ 



‘L 

. 12 

.08 

.M 

0 

-. M 

-.08 
0 -.04 -.08 -4 0 4 a 12 .20 .16 .12 .08 .04  0 -.04 .12 .08 .04 

.M 

0 

‘L, aft 

-.04 

-. 08 
-4 0 4 8 12 0 .004 ,038 .012 .016 .020 .08 .04 0 -.04 -.08 -.12 -.16 

‘D, an 

(b) M = 0.90. 

Figure 49. - Continued. 

‘m. af t  



08 

.04 

0 

CL 

-.04 

-.08 

-. 12 
-4 0 4 8 12 .20 . 16 . 12 .08 .04 0 :04 . 12 .08 .04 0 -.04 :08 

(1, deg ‘(F-D) ‘m 

.04 

0 

‘L, aft -. 04 

-.08 

- l ?  . _ _  
0 -.04 -.08 :12 -.16 -4 0 4 8 12 0 .004 . M)8 .012 .016 .020 .024 .04 

b. aft 

(c) M = 1.20. 

Figure 49.- Concluded. 

‘m, an 



-4 0 4 8 12 .5 . 4  . 3  . 2  . 1  0 -. 1 . 3  . 2  .1 0 -.1 - .2  -.3 

.12 

.08 

‘t, an 

.04 

0 
-4 0 4 8 12 0 ,004 ,008 .012 .016 ,020 .024 .028 0 -.l - .2  -.3 -.4 -.5 

a, deg ‘D, an ‘m, aft 

(a) M = 0.60. 

Figure 50. - Longitudinal afterbody aerodynamic characteristics, SERN nozzle, A/B power. 
b h =  0’; b = -7’; A A t =  1.19. 

V e/ 



! 

-4 0 4 8 12 .20 .16 .12 .OS .04 0 -.04 0 -.04 -.OS :12 -.16 -.20 -.24 

‘(F-Dl ‘m 
a, deg 

‘L, aft 

12 0 .004 .008 .012 .016 .020 .04 0 -.04 -.OS -.12 -. 16 -.20 -.24 -4 0 4 

‘D, aft ‘m. a f i  a, deg 

(b) M = 0.90. 

Figure 50. - Continued. 



I 

---- . ~ ..- . 
. . .  - 

‘L 

-4 0 4 8 12 .20 .16 .12 .08 .04 0 -.04 0 -.04 :08 -.12 -.16 -.20 

a, deg C [ ~ - ~ )  ‘m 

.12 

.08 

‘ L ,  aft 
.04 

0 

-. 04 
-4 0 4 8 12 0 ,004 .@I8 .012 .016 .020 .024 0 -.04 -.08 :I2 -.16 -.20 

‘D, aft 

(c) M = 1.20. 
‘m, aft 

Figure 50. - Concluded. 



C 
L. aft 

12 

08 

'D, aft 

(a) M = 0.60. 
'm, aft 
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I 

.28 

. 24  

.16 

C l  

. 12 

5, aft 

-I_ 0 
-4 0 4 8 12 20 16 12 08 04 0 - 0 4  3 2 1 0 - 1  -.2 - 3  - 4  

n, deg %-DI cm 

.16 

. 12 

.08 

: 04 

0 
-4 0 4 8 12 0 ,004 ,008 .O12 .016 ,020 ,024 ,028 0 - 1  - 2  -.3 - 4  :5 -.6 

0, deg ‘D, aft ‘m. an 

(b) M = 0.90. 

Figure 52. - Continued. 



. .. -~ ... . 

0 -. 1 -. 2 -.3 -4 0 4 8 12 .20 .16 .12 .08 .04 . 2  .1 0 -.04 . 3  

. . . .  , . 

.08 

‘L an ,M 

0 

-. M 
0 -. 1 - . 2  -.3 -. 4 -.5 -4 0 4 8 12 0 .oO4 ,038 ,012 .016 .020 .024 .028 

a, deg ‘D, aft ‘m, aft 

(c) M = 1.20. 

Figure 52. - Concluded. 



~ __ 04 __ 
-4 0 4 8 12 .5 . 4  . 3  . 2  . I  0 -.I . 3  . 2  . I  0 -.I - . 2  ;3 -.4 -.5 

'IF-01 c m  
0. 

(a) M = 0.60. 

Figure 53. - Longitudinal afterbody aerodynamic characteristics, SERN nozzle, A/B power. 
tih = -2'; 6v = 20'; Ae/At = 1.19. 



.20 

.16 

. 12 

.08 

.04 

0 0 -. 1 -. 2 -.3 
0 4 8 12 .20 .16 .12 .08 .04 0 -.04 . 3  . 2  .1 -4 

-4 0 4 8 12 0 .W4 ,008 ,012 .016 .020 ,024 .1 0 -. 1 -. 2 -.3 -.4 -.5 

a. deg ‘D, aft 

(b) M = 0.90. 

Figure 53. - Continued. 

‘m. aft 



.16 

.12 

.08 

“ .04 

0 

-.04 

-.08 
-4 0 4 8 12 .20 .16 .12 .08 .04 0 -.04 , 3  . 2  .1 0 -. 1 -. 2 

a, deg ‘F-DI ‘In 

‘L. aft  

.08 

.M 

0 

-.04 

-.08 
-4 0 4 8 12 0 .Ml4 .@I8 .012 .016 .020 .024 .028 0 -. 1 -.2 -.3 -.4 

‘D, aft 

(c) M = 1.20. 

Figure 53. - Concluded. 

‘m. aft  



-.M 

-.08 
-4 0 4 8 I2 .5 . 4  . 3  . 2  . I  0 :I , 3  . 2  ., 0 -.I -.z -.3 -..I -.5 

'0. an 

(a) M = 0.60. 
'm. aft 

Figure 54. - Longitudinal afterbody aerodynamic characteristics, SERN nozzle, A/B power. 
6 h  = -5'; 6 v  = 20'; Ae/% = 1.19. 
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Figure 55. - Longitudinal afterbody aerodynamic characteristics, 2-D C-D nozzle, dry power. 
6h = 0’; 6 v  = 0’; Ae/At = 1.15. 
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Figure 63. - Longitudinal afterbody aerodynamic characteristics, 2-D C-D nozzle, A/B power. 
6 h  = 0’; 6 = 0’; Ae/At = 1.15. 
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Figure 65. - Longitudinal afterbody aerodynamic characteristics, 2-D C-D nozzle, A/B power. 
6 h  = -5'; 6 = 0'; A,/% = 1.15. V 
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Figure 67. - Longitudinal afterbody aerodynamic characteristics, 2-D C-D nozzle, A/B power. 
6 h  = 0’; bv = 7’; Ae/+ = 1.15. 
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Figure 68. - Longitudinal afterbody aerodynamic characteristics, 2-D C-D nozzle, A/B power. 
6 h  = 0’; G V  = 20’; A At = 1.15. 
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Figure 69. - Longitudinal afterbody aerodynamic characteristics, 2-D C-D nozzle, A/B power. 
6 = -2’; 6 = 20’; Ae/At = 1.15. V 
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Figure 71. - Longitudinal afterbody aerodynamic characteristics, wedge nozzle, dry power. 
bh = 0’; 6, = 0’; Ae/At = 1.10. 
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Figure 73. - Longitudinal afterbody aerodynamic characteristics, wedge nozzle, dry power. 
b h  = -5O; 6 V = oo; A,/A~ = 1.10. 
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Figure 74. - Longitudinal afterbody aerodynamic characteristics, wedge nozzle, A/B power. 
6 h  = 0’; 6v = 0’; Ae/% = 1-20. 
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Figure 94.- Effect of vectoring on thrust-removed afterbody forces, SERN nozzle, A/B power. 6h = 0'; CY = 0 0 . 
Dashed lines indicate data results from extrapolating static data. 
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Figure 95.- Effect of vectoring on thrust-removed afterbody forces, 2-D C-D nozzle, dry power. 6 h  = 0'; a = 0'. 
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Figure 100.- Effect of area ratio and vectoring on thrust-removed afterbody forces, SERN nozzle, dry power. 
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Figure 102.- Effect of tails and vectoring on measured afterbody forces, 2-D C-D nozzle, A/B power. 
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Figure 104. - Effect of tails and vectoring on thrust-removed afterbody forces, 2-D C-D nozzle, A/B power. 
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Figure 116. - Comparison of vectored performance of nozzles at static conditions 
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